A Single Mouse Trial Platform for Evaluation of Novel Agents in Acute Lymphoblastic Leukemia by the Pediatric Preclinical Testing Consortium

Richard B. Lock1, Kathryn Evans1, Tara Pritchard1, Cara Toscan1, Chelsea Mayoh1, Beverly Teitcher2, Raushan T. Kumasheva3, Peter J. Houghton3 and Malcolm Smith3.

1Children’s Cancer Institute, Sydney, Australia; 2National Cancer Institute, Bethesda, MD; 3Greehey Children’s Cancer Research Institute, San Antonio, TX.

1. Introduction
- The outcome for several high-risk subtypes of pediatric acute lymphoblastic leukemia (ALL) is extremely poor.
- Selecting the most active agents for clinical evaluation is critical as there are relatively few patients eligible for clinical trials.
- Conventional preclinical testing of novel agents is not sufficiently resourced to be able to encompass the vast heterogeneity between and within pediatric ALL subtypes.
- New approaches to preclinical testing in pediatric ALL are required.
- A single mouse trial (SMT) platform using a large panel of pediatric ALL patient-derived xenografts (PDXs) allows:
 - preclinical assessment of novel agents on an almost clinical trial scale;
 - the broad heterogeneity of pediatric ALL to be approximated within a single experiment;
 - biomarker discovery and validation by using molecularly annotated PDXs.

2. Study Methods
- Study administration:
 - Topotecan (Tpt), 0.6mg/kg IP daily × 5 × 2 weeks, repeated at 21 days.
 - Birinapant (Bpt), 15mg/kg IP every 3 days × 5.

Study design and analysis:
- 80 pediatric ALL PDXs broadly representative of all pediatric ALL subtypes were molecularly annotated by RNA-seq, exome-seq and DNA copy number analysis.
- 2 NSG mice/PDX were inoculated via tail vein injection and treatment began when the percentage of human CD45+ cells (%huCD45+) in the murine peripheral blood (PB) reached ≥ 1%.
- An event was defined as ≥ 25% huCD45+ cells in PB, or when the mouse exhibited leukemia-related mortality associated with high-level leukemic infiltration (≥ 50% huCD45+) of at least 2 major organs.
- The Kaplan-Meier method was used to determine event-free survival (EFS) between control and treated groups.
- Treatment response was monitored using Objective Response Measures (ORM) modeled after stringent clinical criteria, which was assessed at Day 42 post treatment initiation (Houghton et al., 2007).
 - PDI = progressive disease 1, %huCD45+ in PB never drops below 1% and event is not reached by Day 42.
 - PDI = progressive disease 2, %huCD45+ in PB never drops below 1% and event is reached after Day 14, but before Day 42.
 - SD = stable disease, %huCD45+ in PB never drops below 1% and event is not reached by Day 42.
 - CR = complete response, %huCD45+ in PB = 1% for 2 consecutive weeks and event is not reached by Day 42.
 - MCRI = maintained complete response, %huCD45+ in PB = 1% for at least 3 consecutive weeks after treatment completion and event is not reached by Day 42.
 - Waterfall plots represent the ratio of the minimal %huCD45+ in the PB at any point after treatment initiation relative to the %huCD45+ at Day 0.
- PDx authenticity was verified using a 60-allele SNP array at both inoculation and at event (El-Hoss et al., 2016).

3. Results

3.1 Retrospective Analysis of Single Mouse Data
- Retrospective analysis of ≥700 randomly selected mice from agents previously tested by our group (Jones et al., 2016) showed that the single mouse results predicted the overall group response from conventional testing 73.9% of the time (Figure 1).
- This increased to 85.8% if a deviation of ≥1 objective response measure was allowed (Figure 1). (A Single Mouse Trial Platform for Evaluation of Novel Agents in Acute Lymphoblastic Leukemia (ALL) is extremely poor.
- Historically, two major sources of exclusion from an experiment were bad cell source (PDX stocks contaminated with mouse thymoma) and tumor (mouse origin) (Figure 2).
- Elimination of bad cell source and mouse tumors by using high-quality NSG mouse strain could increase the single mouse prediction of overall group response to > 90%.

3.2 SMT Pilot Study with Birinapant and Topotecan
- SMT results achieved for 72 (90.0%) and 71 (88.8%) of the intended 80 mice for birinapant and topotecan, respectively.
- Waterfall plots revealed that 30/32 (41.7%) and 60/71 (84.5%) of PDXs achieved regressions in response to birinapant and topotecan, respectively (Figure 3). Distinctive activity profiles were identified for each agent.
- Comparing historical ORMVs from conventional drug testing performed by the PPTC with SMT results showed high concordance for both birinapant (r = 0.804, p = 0.0001, n = 17) and topotecan (r = 0.904, p = 0.0143, n = 7) (Table 1).

3.3 Gene Expression Signatures Associated with In Vivo Response
- Analysis of divergent responses observed within the BCP-ALL subtype to birinapant and the within the MLL-ALL subtype to topotecan, revealed unique gene expression signatures that distinguished between in vivo response (Figure 4).

4.4 Discussion and Conclusions
- SMTs can almost encompass the heterogeneity of pediatric ALL in a single mouse trial (SMT) platform using a large panel of pediatric ALL patient-derived xenografts (PDXs) allows:
 - preclinical assessment of novel agents on an almost clinical trial scale;
 - biomarker discovery and validation by using molecularly annotated PDXs.
- Waterfall plots represent the ratio of the minimal %huCD45+ in the PB at any point after treatment initiation relative to the %huCD45+ at Day 0.
- PDx authenticity was verified using a 60-allele SNP array at both inoculation and at event (El-Hoss et al., 2016).

5. References

More Information
*Corresponding author: Richard B. Lock, PhD Email: lock@cia.org.au
Presented at: American Society of Hematology (December 2018)
Supported by: U01CA19000 and U01CA195222 from the NCI.
www.ncipptc.org
There are no relationships to disclose.