The Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitor, OT–82, Exhibits In Vitro and In Vivo Efficacy Against Patient-Derived Xenograft Models of High-Risk Acute Lymphoblastic Leukemia

A Report from the Pediatric Preclinical Testing Consortium

Kathryn Evans1, Tara Pitchard1, Michele J. Henderson1, Klaartje Somers1, Mawar Karsa1, Leanna Cheung1, Raymond Yang2, Stephen W Erickson2, Lioubob Korotchkina3, Olga Chernova4, Andrei Gudkov2,4, Malcolm A. Smith1 and Richard B. Lork1

1Children’s Cancer Institute, Low Cancer Research Centre, UNSW Australia, Sydney, NSW, Australia; 2RTI International, Research Triangle Park, NC; 3Oncotaxis, Inc., Buffalo, NY, USA; 4Rosewell Park Cancer Institute, Buffalo, NY, USA.

Abstract #1942

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and although children with ALL are cured, certain subtypes have significant relapse risk. Against this background, there is a pressing need for alternative strategies to target resistant/all refractory ALL. The nicotinamide phosphoribosyltransferase (NAMPT) is a novel target that has been associated with ALL disease progression. The potential therapeutic effects of NAMPT inhibition in preclinical ALL models were investigated in this study. NAMPT inhibition presents a potential therapeutic strategy for targeting ALL. In the present study, the novel NAMPT inhibitor OT–82, exhibits antiproliferative effects in preclinical ALL models, was validated in its efficacy in a panel of preclinical ALL models and identified potential PAR and NAD-dependent protein interactors.

AIMS

- Evaluate the efficacy of OT–82 in cell lines derived from ALL. Drugs were evaluated in HER2, ETS, and ALL–8 ALL cell lines.
- Investigate the effect of OT–82 in Xenograft models of ALL (Doxil, CU1, LAm-1, and ALL–1).

METHODS

In vitro drug sensitivity studies

Cell viability, cell proliferation, and spleen weight were determined for ALL cell lines after incubation with OT–82 (0–100 nM) for 48 hours. The half-maximal effective concentration (EC50) was calculated. Colony, where sensitivity is defined as an EC50 > 100 nM, an additive effect as EC50 = 10–100 nM, and a sensitive effect as EC50 < 10 nM.

In vivo drug sensitivity studies

Pediatric ALL (PDX) previously established in our lab at the Children’s Cancer Institute (CCI) was used. The PDXs were treated with oral OT–82 (0–100 mg/kg) per day for 7 days. The single-agent treatment of the single-agent treatment for 7 days in mice bearing the ALL–8 xenograft (OR = 0.2, 95% CI = 0.1–0.4) was effective in reducing the tumor burden.

RESULTS

OT–82 demonstrated in vivo efficacy against a diverse panel of pediatric ALL PDXs

SUMMARY OF FINDINGS

- OT–82 as a single agent demonstrated low nanomolar (nM) IC50 values in vitro with leukemia cell lines and significant anti-leukemia activity as a single agent against a diverse panel of pediatric ALL PDXs, in vivo. OT–82 treatment elicited objective responses in 11/13 (85%) of ALL PDXs with matched clinical responses in 4/13 (30%).

- Pharmacological studies suggest that modification of RPA and/or equivalent regulators do not correlate with OT–82 response in the evaluated PDXs, and further studies into identifying markers of OT–82 response are ongoing.

ACKNOWLEDGEMENTS

This research was supported by the National Cancer Institute (U01CA163580). OT–82 was provided for testing by Genentech. Children’s Cancer Institute is affiliated with the University of New South Wales and Sydney Children’s Hospital Network.